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The transition from simple periodic to bursting behavior in a three-dimensional model system of the hemin–
hydrogen-peroxide–sulfite pH oscillator is investigated. A two-parameter continuation in the flow rate and the
hemin decay rate is performed to identify the region of complex dynamics. The bursting oscillations emerge
subsequent to a cascade of period-doubling bifurcations and the formation of a chaotic attractor in parameter
space where they are found to be organized in periodic-chaotic progressions. This suggests that the bursting
oscillations are not associated with phase-locked states on a two-torus. The bursting behavior is classified by a
bifurcation analysis using the intrinsic slow-fast structure of the dynamics. In particular, we find a slowly
varying quasispecies �i.e., a linear combination of two species� which acts as an “internal” or quasistatic
bifurcation parameter for the remaining two-dimensional subsystem. A systematic two-parameter continuation
in the internal parameter and one of the external bifurcation parameters reveals a transition in the bursting
mechanism from sub-Hopf/fold-cycle to fold/sub-Hopf type. In addition, the slow-fast analysis provides an
explanation for the origin of quasiperiodic behavior in the hemin system, even though the underlying mecha-
nism might be of more general importance.
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I. INTRODUCTION

Complex oscillatory patterns in chemical and biological
systems have been the focus of scientific interest for several
decades. Mixed-mode and bursting oscillations are of par-
ticular interest due to their potential relevance for signal
transduction processes in biological systems. While mixed-
mode oscillations �MMO’s� were first observed in chemical
reactions such as the Belousov-Zhabotinsky �BZ� �1,2� and
later the peroxidase-oxidase �PO� reaction system �3–5�,
bursting behavior was predominantly reported for biological
processes such as nerve signal conduction �6,7�, signal trans-
duction dynamics in the cell involving calcium ions as sec-
ond messengers �8,9�, and the secretion of insulin by pancre-
atic �-cells �10–12�.

However, the distinction between mixed-mode and burst-
ing oscillations is somewhat arbitrary and seems to reflect
the context in which they were found experimentally. Both
types of dynamics can be characterized as a repeating pattern
of L large amplitude oscillations followed by S small ones.
The corresponding dynamical states are denoted as LS, a no-
menclature that has particularly prevailed for MMO’s. Alter-
natively, bursting behavior can be conveniently classified by
a slow-fast analysis following Rinzel and Ermentrout �13�.
Systems exhibiting bursting oscillations typically involve a
fast oscillatory subsystem which is coupled to a slowly
evolving variable acting as a quasistatic bifurcation param-
eter for the fast subsystem. Accordingly, the bursting behav-

ior can be classified by the type of bifurcations occurring in
the fast subsystem that lead to the emergence and disappear-
ance of the bursting state �14�. It is noteworthy that, although
the article by Rinzel and Ermentrout �13� can be regarded as
the seminal work in which this kind of slow-fast analysis
was systematically introduced, there exist earlier papers ap-
plying basically this technique: An example is the work by
Showalter and colleagues �15� on the so-called reversible
Oregonator model for the BZ reaction which already con-
tains first attempts towards a slow-fast analysis to understand
the origin of bursting oscillations in their model.

Mixed-mode and bursting oscillations are frequently en-
countered in the transition region from simple periodic or
quasiperiodic to chaotic behavior. It was found experimen-
tally that in the BZ �2� as well as in the PO system �5� the
MMO’s are organized in Farey sequences similar to the pe-
riodic states that emerge along the “quasiperiodic route to
chaos” on an invariant two-torus. Numerical simulations of
the corresponding model systems supported these results
�4,16–18�. However, Hauser and Olsen �3� found MMO’s in
the PO system which were associated with a saddle-focus
homoclinic orbit instead of a two-torus. Similarly, Koper
�19� observed MMO’s in a three-variable extension of the
Boissonade-DeKepper model �20� which emerge from a neu-
trally twisted homoclinic orbit in a codimension-2 bifurca-
tion. Another possible scenario was put forward by Ringland
and colleagues �21�, who showed that a family of two-
extremum maps may �in a certain limit� equally account for
the ordering of MMO’s into Farey sequences without the
necessity of involving a two-torus. Goryachev and co-
workers �22� found a concrete realization of this map in
terms of a Poincaré map associated with the three-
dimensional flow of another three-variable extension of the
Boissonade-DeKepper model which accounts for a qualita-
tive description of transient MMO’s in the BZ reaction. They
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reported that the MMO’s are embedded into a horseshoe-
type attractor.

In the present article, we investigate the bursting oscilla-
tions in the hemin–hydrogen-peroxide–sulfite system
�23–25� which belongs to the class of so-called pH oscilla-
tors. These systems exhibit an autocatalytic production of H+

ions while they differ in the species that provides for a nega-
tive feedback to allow for oscillatory dynamics. In earlier
studies, inorganic compounds such as hexacyanoferrate
�26,27�, thiosulfate �28�, sulfide �29�, or hydrogen carbonate
�30� have been used to accomplish the negative feedback.
The corresponding experimental and numerical investiga-
tions revealed that pH oscillators may support a period-
doubling route to chaos �27� as well as complex oscillatory
patterns such as bursting oscillations �28,31�. However, a
detailed bifurcation analysis unveiling the nature of the com-
plex oscillatory patterns in pH oscillator systems has, to our
knowledge, not yet been performed. This task is the main
objective of the present article. In particular, we are inter-
ested in the elucidation of the underlying bursting mecha-
nism and the bifurcations involved in the transition from
simple periodic to bursting oscillations.

A. Hemin–hydrogen-peroxide–sulfite system

The basis for our analysis is the reaction mechanism of
the hemin–hydrogen-peroxide–sulfite system as it was pro-
posed in �25�. Similar to other pH oscillators, it involves an
autocatalytic production of H+ while the negative feedback,
preventing an unbounded production of H+, is provided by
reactions involving hemin, a biocompatible mimic for heme-
containing enzymes. Assuming mass-action kinetics, the
most prominent dynamical features of the hemin system such
as bursting or mixed-mode oscillations were described by a
six-dimensional system of ordinary differential equations
�ODE system� in a previous study �25�. Using the method of
quasi-integrals, a three-dimensional approximation to the
six-dimensional system was derived by a slow manifold re-
duction while retaining the local bifurcation structure �32�.
The three-dimensional system reads

ẋ = k0x2
0 − x„k0 + k1s�x,y� + �k2 + k3�a − x − y + s�x,y���…

��x1
0 − x2

0 + x − s�x,y�� ,

ẏ = − k0y − k6y + k7z�a − x − y + s�x,y�� ,

ż = k0�x5
0 − z� − k8z + k6y − k7z�a − x − y + s�x,y�� , �1�

where s�x ,y� stands for the slow manifold of the six-
dimensional system given by

s =
1

2
�x + y − a −

k4

k5
� +

1

2
	�x + y − a +

k4

k5
�2

+ 4
k4

k5
�x4

0 − y� .

�2�

For convenience, we have changed the notation of the vari-
ables from �y1 ,y2 ,y3 ,y4� �which were used in �32�� to
�x ,y ,z ,s�. The numerical values of the rate constants
k1 , . . . ,k8 and the concentrations xi

0 in the inflow streams of a
continuous-flow stirred tank reactor are compiled in Table I;
a is an abbreviation for x4

0−x1
0+x2

0. k0 denotes the flow rate
through the reactor. According to the experimental situation,
it is used as the principal bifurcation parameter for the ODE
system �1� ranging in the interval k0� �1�10−4 s−1 ,4.5
�10−4 s−1�.

Next, we perform the linear coordinate transformation

p = y + z , �3�

which is motivated by the following two observations: First,
after the transformation �3� one of the equations in �1� be-
comes affine and more simple:

ẋ = k0x2
0 − x„k0 + k1s�x,y� + �k2 + k3�a − x − y + s�x,y���…

��x1
0 − x2

0 + x − s�x,y�� ,

ẏ = − �k6 + k0�y + k7�p − y��a − x − y + s�x,y�� ,

ṗ = k0�x5
0 − p� − k8�p − y� . �4�

Second, in chemical terms, p corresponds to the total con-
centration of hemin species in the system which turns out to
evolve on a slower time scale than the x-y subsystem. Note
that the slow manifold s�x ,y� is independent of p. Later on,
the ODE system �4� will be the starting point for a slow-fast
analysis where the slow variable p is used as a quasistatic
bifurcation parameter for the dynamics in the transversal
x-y subsystem.

As can be grasped from the third equation of �4�, the slow
dynamics of the p variable is basically determined by the
flow rate k0 and the rate constant k8 which represents the
decay rate of the hemin species. Since the experimental value
of k8 has not been precisely determined so far, we shall use
it, in addition to the flow rate k0, as a second bifurcation
parameter. The mechanistic role of hemin is to prevent the
unbounded production of H+ species and, thus, the hemin
decay rate should be a sensible parameter. In fact, if k8 is
identically zero, the ODE systems �1� and �4� become essen-
tially two dimensional and no complex dynamics is possible
anymore.

TABLE I. Rate constants and inflow stream concentrations for the hemin pH oscillator.

k1=0.2 M−1 s−1 k2=1.5 M−1 s−1 k3=8.5�106 M−2 s−1 k4=1000 s−1

k5=1010 M−1 s−1 k6=0.011 s−1 k7=2.5�104 M−1 s−1 k8=2.5�10−4 s−1

x1
0=0.025 M x2

0=0.045 M x4
0=2.2�10−4 M x5

0=3�10−4 M
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B. Outline

In the next section, we introduce the software packages
and scalings of the variables used in the numerical investi-
gations. In Sec. III, the most important dynamical features of
the ODE system �1� �or equivalently �4�� are summarized
and presented in a two-parameter bifurcation diagram using
the flow rate k0 and the decay rate of hemin k8 as parameters.
We show that the simple periodic oscillations either appear
via a supercritical or by a subcritical Hopf bifurcation, de-
pending on the value of the hemin decay rate. In the subcriti-
cal case, stable oscillations are also found. However, they
emerge in a more complex scenario involving a saddle-node
bifurcation of periodic orbits and a subsequent Neimark-
Sacker bifurcation. The transition from simple periodic to
bursting oscillations is found to occur along a branch of pe-
riod doubling bifurcations in the two-parameter plane
spanned by k0 and k8.

In Sec. IV, we perform a slow-fast analysis of the ODE
system �4� in order to study the dynamical origin of the
bursting oscillations. To this purpose, the total concentration
of hemin species p is used as an “internal” or quasistatic
bifurcation parameter for the fast x-y subsystem. As a result,
we obtain a certain bifurcation scenario in the fast subsystem
for each fixed value of the flow rate k0 which acts as an
“external” bifurcation parameter in the system. Since the at-
tracting states in the fast subsystem, in general, depend on
the current value of k0, we perform a two-parameter continu-
ation using the internal bifurcation parameter p together with
the flow rate k0 as the second parameter to monitor the de-
formation of the invariant sets in the two-dimensional fast
subsystem. This analysis reveals an interesting transition in
the bursting behavior from sub-Hopf/fold-cycle to fold/sub-
Hopf type according to the classification scheme proposed
by Izhikevich �14�.

In Sec. V, we summarize our results and discuss the origin
of quasiperiodic behavior in the hemin system in terms of the
invariant sets of the fast subsystem.

II. METHODS

The numerical simulations were performed with the freely
available software package XPPAUT �34�. Due to the stiffness
of the ODE systems �1� and �4�, the “STIFF” integrator
�34,35� with a tolerance of 10−5 was chosen to ensure nu-
merical stability. For the calculation of one- and two-
parameter bifurcation diagrams, we used a version of AUTO

that is integrated in the XPPAUT environment, as well as two
other freely available continuation packages: CONTENT �36�
and MATCONT �37�. The advantage of the latter packages is
their ability to detect codimension-2 bifurcation points by
taking into account the analytical expressions for the deriva-
tives of the vector field up to fourth order. We also made use
of their capability to calculate normal form coefficients of
several codimension-2 bifurcations as well as eigenvalues
and multipliers along branches of stationary and oscillatory
solutions.

As they stand, the variables x, y, z, and p of the ODE
systems �1� and �4� still possess dimensions and vary in mag-

nitude between 10−4 and 10−2 mol l−1. For convenience, we
rescaled these variables according to

x� = 102 mol−1 l x ,

y� = 104 mol−1 l y ,

z� = 104 mol−1 l z , �5�

where the primed variables denote the dimensionless quanti-
ties used in the simulations and in the figures. For conve-
nience, we shall henceforth drop the prime again. The scal-
ing ensures that the maximum of the variables during their
temporal evolution is of order unity.

The two principal bifurcation parameters in our system
are the flow rate k0 and the decay rate k8 of hemin which are
both simple rate constants having the dimension s−1. Their
order of magnitude is 10−4. Thus, whenever we present nu-
merical values of any of the two parameters, they are to be
understood in units of 10−4 s−1. For example, in the ODE
system �1�, we found a subcritical Hopf bifurcation at
�k0 ,k8�= �1.6461�10−4 s−1 ,2.5�10−4 s−1� which due to our
convention would simply be denoted as �k0 ,k8�
= �1.6461,2.5�.

III. DYNAMICS AND LOCAL BIFURCATIONS

The local bifurcation diagram for the three-dimensional
ODE system �1� was found to be in very good quantitative
agreement with that of the original six-dimensional system
�25,32�. However, the nature of the transition from simple
periodic oscillations to more complex oscillatory patterns has
not yet been resolved. Therefore, we perform a two-
parameter continuation to gain some insight into the global
bifurcation structure of the ODE system �1� �and equally
�4��.

A. Two-parameter continuation in k0 and k8

Figure 1 shows the two-parameter bifurcation diagram for
the ODE system �1� where the flow rate k0 and the hemin
decay rate k8 have been used as continuation parameters. It
basically consists of five regions: In regions 1 and 5, there is
only one stable stationary state. Coming from region 1, the
stationary state loses stability via a subcritical Hopf �SH1,
dashed line� or a supercritical Hopf �H, solid line� bifurca-
tion. In the latter case this leads immediately to the emer-
gence of stable oscillations which remain of simple period-
icity throughout region 2 while in the former case simple
periodic oscillations also arise, but through a series of sec-
ondary bifurcations that will be discussed below. The two
branches of Hopf bifurcations meet in a codimension-2 bi-
furcation point, the generalized Hopf bifurcation GH1 at k8
=1.8920, where the first Liapunov coefficient vanishes
�cf. �33��.

Upon following the curve of supercritical Hopf bifurca-
tions �H� towards lower values of k8, the curve again be-
comes subcritical �SH2� at a second generalized Hopf bifur-
cation �GH2� where k8 is negative. Note that the region
where k8 is negative does not have a physical significance in
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our model; it is merely included for a consistent description
of the bifurcation scenario. Finally, the subcritical Hopf bi-
furcation curve turns into a curve of neutral saddles �where
the eigenvalues fulfill �1+�2=0 with �1, �2�R� close to the
cusp singularity �CP, solid triangle�. However, these neutral
saddles do not correspond to a bifurcation. The region in the
vicinity of the cusp point is magnified in the inset of Fig. 1,
which shows that two branches of saddle-node points �SN1
and SN2� emanate from CP. The transition from Hopf bifur-
cations to neutral saddles in conjunction with the two curves
of saddle-node bifurcations is reminiscent of a Bogdanov-
Takens point although such a point has not been detected.

Bursting oscillations are stable in region 3, which is
bounded by a curve of period-doubling bifurcations �PD� and
the left branch of the saddle-node points SN1. In region 4
two saddle points coexist with one stable equilibrium, which
remains the only fixed point in region 5 where it is stable.
Accordingly, all trajectories settle down to a stationary state
in regions 4 and 5.

The partition into five regions, however, only gives a first
impression of the expected dynamics of the ODE system �1�.
For example, there is a narrow band to the right of the
period-doubling curve PD where an entire cascade of period-
doubling bifurcations occurs as the flow rate k0 is increased
for a fixed value of k8. Subsequently, a folded chaotic attrac-
tor emerges before the first periodic bursting oscillations ap-
pear in region 3. Furthermore, it is known from the normal
form theory of codimension-2 bifurcations �33� that there is
an additional curve bifurcating from the generalized Hopf
point GH1 in Fig. 1 �in our case towards higher values of k8�

along which a saddle-node bifurcation of periodic orbits
�SNP� takes place �not shown�. A similar curve also bifur-
cates from the second generalized Hopf point GH2.

B. Bifurcations along a one-parameter path

In order to obtain a full picture of the bifurcation se-
quences, we take a section along the one-parameter path k8
=2.5 in the k0-k8 plane �dotted line, Fig. 1� where the sta-
tionary state disappears by a subcritical Hopf bifurcation and
simple periodic oscillations arise in the following scenario
�Fig. 2, inset�: The stable stationary state �solid line� loses
stability at k0=1.6461 via a subcritical Hopf bifurcation �SH�
giving rise to an unstable limit cycle with one unstable di-
mension �one Floquet multiplier outside the unit circle�. It is
followed by a saddle-node bifurcation of periodic orbits
�SNP� at k0=1.6438 where the second multiplier also leaves
the unit circle and the limit cycle gains a second unstable
dimension. In the narrow parameter interval between the
SNP and SH bifurcation points, the stationary state is the
only attractor since the coexisting limit cycle is unstable.
Stable oscillations, however, arise at k0=1.6519 by an �in-
verse� Neimark-Sacker �NS� bifurcation where both multipli-
ers simultaneously cross the unit circle inwards. Thus, there
is a stable two-torus bifurcating to the left of the Neimark-
Sacker point �towards lower k0 values� where it coexists
with the saddle-point �corresponding to the dashed line
in the inset of Fig. 2� in the parameter interval k0

FIG. 1. Two-parameter bifurcation diagram in the flow rate k0

and the hemin decay rate k8. Bursting oscillations are stable in
region 3, which is bounded by the period-doubling curve �PD� and
the saddle-node curve SN1. The dotted line at k8=2.5 marks the
parameter path along which the codimension-1 bifurcation diagram
in Fig. 2 has been calculated. Symbols denote SHi, curves of sub-
critical Hopf bifurcations �dashed line�; H, curve of supercritical
Hopf bifurcations �solid line�; SNi, curves of saddle-node bifurca-
tions of fixed points �solid line�; PD, curve of period-doubling bi-
furcations �dash-dotted line�; codimension-2 points: GHi, general-
ized Hopf bifurcations �open triangle�; CP, cusp �solid triangle; see
also the inset�.

FIG. 2. One-parameter bifurcation diagram along the line k8

=2.5 �cf. Fig. 1�. Simple periodic oscillations �solid circles� emerge
via a subcritical Hopf bifurcation �inset, SH� followed by a saddle-
node bifurcation of periodic orbits �inset, open triangle, SNP� and
an �inverse� Neimark-Sacker bifurcation �inset, solid square, NS�.
Between SNP and SH, the only stable attractor is a fixed point,
while a torus is stable between SH and NS. Mixed-mode oscilla-
tions are observed beyond the period-doubling �PD� bifurcations
where the primary limit cycle �open circles� is unstable �see text for
details�. The oscillatory region extends up to the saddle-node bifur-
cation SN1, where a homoclinic bifurcation occurs �see also Fig. 6�.
For the oscillatory states, the minimum and maximum amplitudes
of the oscillation are plotted.
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� �1.6461,1.6519�,i.e., up to the subcritical Hopf bifurcation
SH.

Before proceeding with the discussion of the bifurcations
along the one-parameter path k8=2.5, we shall describe the
phase flow on the torus in more detail.

1. Two-torus with unusual phase flow

In Fig. 3 we monitor the deformation of the torus as the
flow rate k0 is decreased. In the projections on the p-y plane
�Figs. 3�a� and 3�b��, we stopped the numerical integration
before the trajectory made a full revolution on the torus to
reveal a portion of the flow along the “inner part” of the
torus. A sharp transition from a smooth torus shown in Fig.
3�a� at k0=1.651 89 close to the NS bifurcation point to a
highly distorted one at k0=1.651 80 �Fig. 3�b�� is observed.
The arrows indicate the direction of the phase flow along the
torus.

The reason for the rather unusual phase flow is the fol-
lowing: Imagine a two-torus as a direct product of two
circles; then, the angular velocity along the circle with the
larger radius is much higher than that along the circle with
the smaller radius. This behavior is opposite to the usual
situation. In other words, the unusual phase flow is a result of
the time-scale separation in the ODE system �4� where the
trajectory moves much faster in the x-y directions than along
the p direction.

The saddle point S �corresponding to the dashed line in
the inset of Fig. 2� that emerges subsequent to the subcritical
Hopf bifurcation SH in Fig. 2 acts as an organizing center for
the torus as can be seen in Fig. 3�b�: The flow on the torus
moves along the two-dimensional unstable manifold of the
saddle point to approach the “outer part” of the torus. Then it
moves to the left �i.e., towards lower p values� until it
changes direction and returns along the one-dimensional

stable manifold of the saddle. The reason for the trajectory to
change its direction can be grasped from the slow-fast analy-
sis of �4� and will be discussed in Sec. V.

As the flow rate k0 is further decreased, the overall shape
of the torus in Fig. 3�b� does not change significantly any-
more. However, the time spent by the trajectory along the
stable manifold of the saddle point S gradually increases un-
til the torus and saddle point have eventually disappeared to
the left of the subcritical Hopf point �SH� where only a stable
stationary point exists �cf. inset Fig. 2�.

2. Period-doubling route to chaos

We continue the discussion of the codimension-1 bifurca-
tion diagram shown in Fig. 2 where k8 is fixed at 2.5. The
simple periodic oscillations �solid circles� were generated by
a Neimark-Sacker bifurcation at k0=1.6519. They remain
stable up to k0=2.5169 where the first of a series of period-
doubling �PD� bifurcations renders the simple oscillations
unstable and creates a stable period-2 cycle �Fig. 4�a��. The
next two period-doubling bifurcations were resolved at k0
=2.5241 �Fig. 4�b�� and 2.5253 �not shown�.

During the period-doubling cascade, the two multipliers
of the primary unstable limit cycle �open circles in Fig. 2�
rapidly diverge until they are separated by approximately 12
orders of magnitude—i.e., �1
106 and �2
10−6. Thus, the
associated Poincaré map exhibits a strong contraction in one
and a fast expansion in the other direction, indicating the
creation of a folded attractor for the subsequent chaotic re-
gime. In Fig. 4�c� we show a chaotic trajectory together with
its Poincaré map �cf. inset� at k0=2.529. For the Poincaré
map, we plot the value of the x variable each time the y

FIG. 3. Deformation of the two-torus as the flow rate k0 is
decreased from k0=1.65189 �a�,�c� to k0=1.6518 �b�,�d�: �a�,�b� rep-
resent projections onto the p-y plane while �c�,�d� depict the corre-
sponding time series. Close to the Neimark-Sacker point NS in the
inset of Fig. 2, the torus looks smooth �a�. At a slightly decreased
value of the flow rate, the “inner part” of the torus rapidly shrinks to
a linelike manifold along which the trajectory approaches the stable
manifold of the saddle point S �b�.

FIG. 4. Bifurcation scenario beyond the period-doubling bifur-
cation PD in Fig. 2: period-2 �a� at k0=2.52, period-4 �b� at k0

=2.5252, and two subsequent chaotic orbits �c�,�d� at k0=2.529 and
k0=2.53, respectively, are shown. The chaotic trajectory in �c� per-
forms only large amplitude oscillations while that one in �d� makes
irregular excursions to the neighborhood of the saddle point �open
triangle�. The associated Poincaré map of the chaotic orbit in �c� is
shown in the inset. It exhibits the shape of an inverse tent map with
a cuspoid tip �see text for details�. The inset in �d� shows the same
chaotic orbit as in �d� but in a y-z projection where it becomes
apparent that the chaotic attractor is contained in a thin layer in
phase space.
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variable passes a local minimum against the value of x at the
preceding minimum of y. As a result, we obtain a Poincaré
map exhibiting a typical �asymmetric� tent-map shape indi-
cating chaotic behavior. Indeed, the characteristic Liapunov
exponent, which is a measure for the local divergence of
initially close trajectories, is found to be 0.84 at k0=2.529.
Figure 4�d� shows a nearby chaotic orbit at k0=2.530 with a
characteristic Liapunov exponent of 1.12. This orbit differs
from the former one in that the trajectory now also performs
small amplitude excursions to the neighborhood of the
saddle point �open triangle� in an irregular fashion, indicat-
ing the upcoming bursting oscillations. The inset in Fig. 4�d�
shows the same chaotic trajectory at k0=2.53 but in a y-z
projection where it becomes obvious that y and z are basi-
cally anticorrelated which causes the chaotic attractor to be
contained in a thin layer in phase space, a property that also
holds for the subsequent bursting oscillations. Due to the
anticorrelation between y and z, their sum y+z changes only
slowly in time, which again suggests introducing the sum of
y and z as a new variable according to �3�.

3. Bursting oscillations

Subsequent to the formation of the chaotic attractor, we
observe periodic-chaotic progressions of bursting oscillations
�or MMO’s� which are organized into Farey sequences as
described below. Notice that the bursting states are not
shown in the one-parameter bifurcation diagram of Fig. 2
since they do not bifurcate from the primary periodic orbit.
Instead, they emerge as periodic windows interspersing the
chaotic regime that follows the period-doubling bifurcation
PD. This suggests that they belong to isolated bifurcation
curves. Therefore, we present some of the bursting states that
were found by direct numerical integration at the corre-
sponding parameter values.

The first periodic bursting state along the one-parameter
path at k8=2.5 �cf. Fig. 2� is observed at k0=2.545 where 11
large amplitude oscillations alternate with 20 small
excursions �Fig. 5�. According to the mixed-mode nomencla-
ture �LS�, this state is denoted as 1120. Figure 5�a� shows a
projection onto the x-y plane �similar to that in Fig. 4�. How-
ever, if we regard the same state in the p-y projection �Fig.
5�b��, the “unfolding” of the bursting oscillations along the p
direction becomes apparent: In the x-y projection �Fig. 5�a��
the small amplitude oscillations are located in the lower right
corner while in Fig. 5�b� they occur along a linelike manifold
at y
2.1. In Fig. 5�c� we present the time series correspond-
ing to the phase portraits of Figs. 5�a� and 5�b�. The dashed
rectangular region is magnified in Fig. 5�d� showing the
small amplitude oscillations.

As the flow rate k0 increases from 2.545, where a 1120

state is observed, to k0=3.778, narrow chaotic windows al-
ternate with further periodic windows which contain bursting
states with a gradually decreasing number L of large ampli-
tude oscillations. This periodic-chaotic sequence approaches
the window corresponding to L=1 at k0=3.235 where a 113

state is stable. Within each periodic window of fixed L, we
find Farey sequences of bursting states with a different num-
ber S of small amplitude oscillations. For example, in the
periodic window corresponding to the 4S states, the follow-

ing progression was numerically resolved: 417 �k0=2.768�
→418 �k0=2.780�→419 �k0=2.800�→420 �k0=2.830�. In the
transition region between two states LS and LS+1, narrow cha-
otic windows as well as concatenated states of the form
LSLS+1 are found. The latter ones are periodic patterns that
repeat after two revolutions of the trajectory while their num-
ber of small amplitude oscillations differs by one. For the
example above, the 417418 state is found at k0=2.775 while
the other two states, 418419 and 419420, occur at k0=2.795 and
2.817, respectively.

The parameter window, where LS states are stable, be-
comes larger as L gets smaller. At k0=3.390, the number of
small amplitude oscillations for the 1S progression already
exceeds 20, but their amplitudes are too small to be counted.
As the sequence of 1S states approaches k0=3.778, the num-
ber of small amplitude oscillations steadily increases while
the chaotic region between two such states becomes broader.
Thus, one may suspect that within each periodic window of a
fixed number of large amplitude oscillations, LS states with
arbitrary integer number S exist though most of them occur
in too narrow parameter intervals to be observed in numeri-
cal simulations.

Subsequent to the periodic-chaotic progression of bursting
oscillations, there is a further parameter interval where we
observe simple periodic oscillations which are now of relax-
ational type and have long periods �Fig. 6�a��. In Sec. IV we
shall show that the hemin system undergoes a transition in
the bursting mechanism at k0=3.778 which causes the relax-
ational character of the oscillations beyond the periodic-
chaotic progression of bursting states. The relaxational oscil-
lations terminate at k0=3.858 via a saddle-node homoclinic
bifurcation where the saddle-node bifurcation SN1 �cf. Figs.
1 and 2� occurs on the formerly periodic solution �Fig. 6�b��.

This completes the discussion of the bifurcation diagram
Fig. 2 along the one-parameter path at k8=2.5 in Fig. 1.

FIG. 5. The 1120 MMO at k0=2.545 is shown in a y-x projection
�a� and in a p-y projection �b� from which the unfolding of the
mixed-mode state along the p direction becomes apparent. The cor-
responding time series is presented in �c� while the dashed rectan-
gular region in �c� is magnified in �d� showing the small amplitude
oscillations.
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IV. GEOMETRICAL DESCRIPTION OF THE BURSTING
OSCILLATIONS

In this section we exploit the intrinsic slow-fast structure
of the hemin system �4� using the �x ,y , p� coordinate system
in order to investigate the bursting mechanism directly in
phase space. As already mentioned, p evolves on a slower
time scale than the transversal x-y subsystem. In particular,
the bursting oscillations “unfold” along the p direction �cf.
Fig. 5�b��, making the hemin system in the �x ,y , p� coordi-
nates particularly suitable for a slow-fast analysis.

The slow-fast analysis is performed by treating the slow
variable p as a �quasistatic� bifurcation parameter for the
two-dimensional fast subsystem:

ẋ = k0x2
0 − x„k0 + k1s�x,y� + �k2 + k3�a − x − y + s�x,y���…

��x1
0 − x2

0 + x − s�x,y�� ,

ẏ = − �k6 + k0�y + k7�p − y��a − x − y + s�x,y�� , �6�

which is simply obtained by omitting the linear equation
describing the slow p dynamics,

ṗ = − �k0 + k8�p − k8y + k0x5
0, �7�

from the three-dimensional ODE system �4�.
The bifurcation structure of Eqs. �6� will be analyzed in

two steps: In Sec. IV A we fix the flow rate k0 at an arbi-
trarily chosen value and describe the bifurcations in the fast
subsystem leading to the bursting oscillations at this particu-
lar value of k0. Depending on the current value of the slow
variable p, we will find several stationary and/or oscillatory
states in the fast subsystem. These states extend to quasista-
tionary manifolds along the p direction. In particular, fixed
points of the fast subsystem extend to linelike quasistation-
ary manifolds while oscillatory states of the fast subsystem
become cylinderlike quasistationary manifolds. Due to the
finite time scale separation between the fast subsystem and
the slow p dynamics, the trajectories of the full three-
dimensional system �4� will be confined to the neighborhood
of these quasistationary manifolds in phase space.

In a second step, we investigate in Sec. IV B how the
quasistationary manifolds, which exist at a particular value
of k0, change in dependence on k0. Thus, k0 may be regarded

as an external bifurcation parameter for the two-dimensional
subsystem �6�. In contrast to k0, the actual value of the slow
variable p can not be prescribed. Instead, it evolves dynami-
cally, although within a narrow range of values, according to
Eq. �7� and, thus, we have called p an internal bifurcation
parameter.

Note that the truncated ODE system �6� no longer de-
pends on the hemin decay rate k8, which has been used as a
second bifurcation parameter in the two-parameter bifurca-
tion diagram of Fig. 1. Thus, for each fixed value of the
external bifurcation parameter k0, we obtain a set of quasi-
stationary manifolds in the three-dimensional system that ex-
ist independently of k8. However, k8 determines �together
with k0� the slow dynamics of the p variable according to Eq.
�7� and, consequently, it affects the dynamics of the trajecto-
ries of the full three-dimensional system.

A. Slow-fast analysis at a fixed value of k0

In Fig. 7�a� we present the codimension-1 bifurcation dia-
gram for the fast subsystem �6� using p as a bifurcation pa-
rameter while k0 is fixed �arbitrarily� at k0=2.8. Stationary
states are plotted as thin lines while the maxima and minima
of the oscillatory states are plotted as bold lines. The stability
of the states is indicated by using solid lines for stable states
and dashed lines for unstable ones. There are two branches
of stable stationary states in the fast subsystem: one at y

2 and the other at y
1. Both of these branches become
unstable via subcritical Hopf bifurcations �SH1 and SH2�

FIG. 6. Large relaxational oscillations at k0=3.8 close to a ho-
moclinic orbit �a�. The corresponding trajectory in phase space is
shown in �b�. SN1 marks the location where a saddle-node bifurca-
tion will occur at k0=3.858 on the formerly periodic solution. This
yields a saddle-node homoclinic bifurcation and causes the oscilla-
tions to cease.

FIG. 7. Slow-fast analysis at a fixed value of the flow rate k0

=2.8: The bifurcation diagram of the fast subsystem �6� is shown in
�a�. The dotted rectangular region is magnified in �b� together with
the trajectory �medium solid line� of a 419 state at k8=2.5. The orbit
wraps 4 times around the cylinderlike quasistationary manifold that
is composed of stable limit cycle solutions and subsequently per-
forms 19 small amplitude oscillations along the linelike quasista-
tionary manifold which is magnified in �c�. In �d� a three-
dimensional view of the 419 state is shown together with a
projection onto the x-y plane. Solid and dashed bold lines denote
maxima and minima of a stable and an unstable limit cycle while
solid and dashed lines denote stable and unstable fixed points of the
fast subsystem.
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while the stable oscillations emerge by saddle-node bifurca-
tions �SNP1 and SNP2� where a stable limit cycle merges
with an unstable one.

The magnification of the dotted rectangular region of the
bifucation diagram in Fig. 7�a� is displayed in Fig. 7�b�. It
shows the bifurcations in the fast subsystem together with
the 419 bursting state at k8=2.5, which is confined to the
region in phase space where the subcritical Hopf SH1 and the
saddle-node bifurcation SNP1 occur in the fast subsystem.
The dotted line ṗ=0 denotes the nullcline of Eq. �7�; i.e., it
indicates in which region of phase space the trajectory �me-
dium solid line� moves to the left �ṗ�0 below the nullcline�
and to the right �ṗ�0 above the nullcline�. Note that the
orbit is always confined to the neighborhood of the invariant
states of the fast subsystem. At the present value of k8=2.5,
the orbit makes four loops close to the cylinderlike manifold
before it “jumps” to the linelike manifold where it performs
19 small oscillations. This can be seen in Fig. 7�c�, which
shows a magnification of the dotted rectangular region in
Fig. 7�b�. In general, a LS state wraps L times around the
cylinderlike manifold and oscillates S times along the line-
like manifold. In Fig. 7�d� a three-dimensional view of the
419 state in the �x ,y , p� coordinate system is presented to-
gether with a projection onto the x-y plane which again dem-
onstrates the unfolding of the bursting state along the p
direction.

1. Sub-Hopf/fold-cycle bursting

In order to clarify how the bifurcations in the fast sub-
system lead to the emergence and disappearance of the burst-
ing oscillations, one turn of the trajectory of the 419 MMO is
described in detail. We begin to the left of the SNP1 point in
Figs. 7�b� and 7�c� where the linelike quasistationary mani-
fold is the only attractor. Since it is entirely composed of
stable stationary states of the fast subsystem �6� which are
foci, the trajectory performs damped oscillations along this
manifold �Fig. 7�c��. Subsequent to the subcritical Hopf
point SH1, the foci change stability and, hence, the quasista-
tionary manifold becomes unstable. Accordingly, the ampli-
tude of the oscillations increases again while the trajectory
gets more and more attracted by the invariant cylinderlike
manifold that consists of stable limit-cycle solutions of the
fast subsystem. In the following the trajectory wraps around
the cylinderlike manifold while it performs large amplitude
oscillations. During that period, the orbit spends some time
above and some time below the plane defined by the
nullcline equation ṗ=0 �Fig. 7�b��. In total, however, there is
an effective movement of the trajectory towards lower p val-
ues until it passes the saddle-node bifurcation point SNP1
where it jumps back to the linelike quasistationary manifold
to complete one revolution. The reason for the net movement
towards lower p values is the slowing down effect that the
linelike quasistationary manifold exerts on the part of the
trajectory above the nullcline plane where the velocity along
the trajectory is much smaller than below the nullcline plane.
Thus, in the phase of large amplitude oscillations p decreases
except for slow increases during short passages near the line-
like manifold.

According to the classification of bursting mechanisms
given in Ref. �14�, the hemin system is a sub-Hopf/fold-cycle
burster at k0=2.8 since the large amplitude oscillations ter-
minate by a fold-cycle bifurcation �SNP1� while the small
oscillations disappear via a subcritial Hopf bifurcation �SH1�.
As we shall show in the next subsection, there is a transition
in the bursting behavior at higher values of the flow rate k0.

B. Two-parameter continuation in p and k0

So far we have analyzed the bifurcations in the fast sub-
system �6� at one particular value of the external bifurcation
parameter, i.e., at k0=2.8. We will now study how the invari-
ant states of the fast subsystem change as k0 is varied. To this
purpose we again proceed in two steps: First, we monitor the
deformation of the linelike quasistationary manifold corre-
sponding to the branch of stationary solutions of the fast
subsystem. In the second step, we also include the oscillatory
states and present a complete two-parameter bifurcation dia-
gram of the fast subsystem using the slow variable p and the
flow rate k0 as parameters.

In Fig. 8 we show how the linelike quasistationary mani-
fold deforms as the flow rate k0 is increased from the value
2.8 �I� used in the previous section via 3.6 �II� to 3.8 �III�.
Along these curves, we find certain codimension-1 bifurca-
tions which are connected by curves obtained from a two-
parameter continuation using p and k0 as parameters. For
example, the curve I intersects the branches SH1 and SH2
�dashed lines� in two points where subcritical Hopf bifurca-

FIG. 8. Overlay of one- and two-parameter bifurcation diagrams
for the fast subsystem �6�: Curves I, II, and III show how the branch
of stationary states of the fast subsystem changes as the flow rate k0

is increased from 2.8 via 3.6 to 3.8. The codimension-1 bifurcations
occurring along curves I, II, and III are found at the intersection
points of these curves with the two-parameter continuation curves
SHi and SNi. Symbols denote SHi, curves of subcritical Hopf bifur-
cations �dashed line�; H, curve of supercritical Hopf bifurcations
�solid line�; SNi, curves of saddle-node bifurcations of fixed points
�dotted line�; codimension-2 points: GHi, generalized Hopf bifurca-
tions �open triangle�; BT, Bogdanov-Takens �diamond�; CP, cusp
�solid triangle�.
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tions occur. These Hopf bifurcations are the same as those in
Fig. 7�a�.

At a higher value of the flow rate �k0=3.495� there is a
Bogdanov-Takens �BT� bifurcation occurring in the fast sub-
system where the second branch of subcritical Hopf bifurca-
tions SH2 terminates. As a consequence, the other two
branches of stationary states �II and III� still intersect the first
subcritical Hopf bifurcation curve SH1, but no longer SH2.
Instead, the two branches II and III cross the two saddle-
node bifurcation curves SN1 and SN2 that emerge at CP from
a cusp singularity. Note that the location of the first saddle-
node bifurcation point SN1 moves to lower p values as the
flow rate k0 increases. This may lead to interactions of SN1
with the oscillatory states that are generated in the subcritical
Hopf bifurcation SH1, but which have been omitted in Fig. 8
for clarity.

The complete two-parameter bifurcation structure of the
fast subsystem including the oscillatory states is summarized
in Fig. 9 where p and k0 were used as parameters. The bifur-
cation lines SH1, SN1, etc., are the same as those in Fig. 8. In
addition, a branch of saddle-node bifurcations of periodic
orbits �SNP1� is shown which bifurcates from the general-
ized Hopf bifurcation point GH1 �cf. inset Fig. 9�a��. This
codimension-2 bifurcation point separates two branches of
Hopf bifurcations: a supercritical �H� and a subcritical �SH1�
one. The second inset �Fig. 9�b�� shows a magnification of
the region close to the cusp bifurcation point CP where the
two branches of saddle-node bifurcations originate.

From the two-parameter bifurcation diagram in Fig. 9,
one can identify the invariant sets of the fast subsystem at a

given value of the slow variable p which, in turn, determine
the potential dynamical properties of the system. For ex-
ample, region 1 corresponds to the upper stationary state at
y
2, while we find the cylinderlike manifold that is com-
posed of stable limit cycle solutions in region 2. In addition,
there is a small bistable region bounded by the two curves
SNP1 and SH1 where a limit cycle coexists with a stationary
state �cf. Fig. 7�c��. Thus, one can deduce that whenever the
slow p dynamics is such that p sweeps back and forth be-
tween region 1 and 2 in phase space while crossing the SNP1
curve, the hemin system exhibits bursting behavior as de-
scribed in Sec. IV A.

1. Transition in the bursting behavior

The two-parameter bifurcation diagram shown in Fig. 9
can also be used to identify transitions in the bursting behav-
ior of the hemin system. To this purpose, consider the inter-
section point �p ,k0�= �2.211,3.773� marked as 3. Here, the
subcritical Hopf bifurcation SH1 and the saddle-node bifur-
cation SN1 occur at the same value of p in phase space. Thus,
in a neighborhood of the intersection point it becomes pos-
sible that the �unstable� oscillatory states emanating from the
subcritical Hopf bifurcation may interact with the branch of
�unstable� states that originate in the saddle-node bifurcation.
In order to show that this truly leads to a transition in the
bursting behavior of the hemin system, we compare the bi-
furcation diagrams of the fast subsystem for two neighboring
values of the flow rate k0.

In Fig. 10 the codimension-1 bifurcation diagrams of the
fast subsystem are shown for k0=3.6 �Fig. 10�a�� and k0
=3.8 �Fig. 10�c��, respectively. Again, the trajectories �calcu-
lated for k8=2.5� are superimposed on the bifurcation dia-
grams. The typical wave form of the oscillations is displayed
in the corresponding time series �Figs. 10�b� and 10�d��. The
branches of stationary states �thin lines� in Figs. 10�a� and
10�c� are the same as the curves II and III in Fig. 8, but now
they are supplemented by the oscillatory states �bold lines�
arising from the subcritical Hopf bifurcation SH1. At k0
=3.6 the cylinderlike manifold is bounded by the saddle-
node bifurcation SNP1 at the left side and the saddle-node
homoclinic orbit SNHC at the right side �at p
2.7� where
the saddle-node bifurcation SN1 occurs on the large-
amplitude-limit cycle.

As the flow rate k0 increases from 3.6 to 3.8, the saddle-
node homoclinic orbit moves together with the two saddle-
node bifurcation points SN1 and SN2 towards lower p values
until the first of them �SN1� collides with the unstable limit
cycle �bold dashed line� at approximately k0
3.778 �not
shown�, i.e., slightly above the intersection point 3 of Fig. 9.
Subsequent to this bifurcation, the saddle-node homoclinic
orbit �SNHC� has turned into a saddle homoclinic orbit
�SHC� while the saddle-node bifurcation SNP1 has disap-
peared �Fig. 10�c��. Thus, the cylinderlike manifold �Fig.
10�a�, bold solid lines� does not appear anymore for k0
�3.778 and the fast subsystem becomes bistable. Hence-
forth, the bursting behavior of the hemin system is of fold/
sub-Hopf type since the upper stationary state disappears via
the subcritical Hopf bifurcation SH1 while the lower station-
ary state undergoes a fold bifurcation at SN1. A typical tra-

FIG. 9. Two-parameter bifurcation diagram of the fast sub-
system �6� using the slow variable p and the flow rate k0 as param-
eters. If p sweeps back and forth between region 1 and 2 crossing
the SNP1 curve, the dynamics of the whole system exhibits bursting
behavior. In the neighborhood of the intersection point 3 a transition
in the bursting mechanism occurs �see text and Fig. 10 for details�.
Symbols denote SHi, curves of subcritical Hopf bifurcations
�dashed line�; H, curve of supercritical Hopf bifurcations �solid
line�; SNi, curves of saddle-node bifurcations of fixed points �dotted
line�; SNP1, curve of saddle-node bifurcations of periodic orbits
�dash-dotted line�; codimension-2 points: GHi, generalized Hopf
bifurcations �open triangle�; BT, Bogdanov-Takens �diamond�; CP,
cusp �solid triangle�.
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jectory basically jumps back and forth between the two qua-
sistationary states �Fig. 10�c��, causing the strong
relaxational character of the oscillations �Fig. 10�d��.

V. DISCUSSION

The bifurcation structure of the hemin–hydrogen-
peroxide–sulfite system was analyzed in detail using a three-
dimensional approximation �Eqs. �1� and �4�� which is in
very good quantitative agreement with the originally six-
dimensional system �25�. A systematic two-parameter con-
tinuation in the flow rate k0 and the hemin decay rate k8
revealed �cf. Fig. 1� that, depending on the value of the
hemin decay rate, simple periodic oscillations either arise
from a supercritical Hopf bifurcation or from a sequence of
codimension-1 bifurcations starting with a subcritical Hopf
bifurcation which is followed by a saddle-node bifurcation of
periodic orbits and a Neimark-Sacker bifurcation �inset,
Fig. 2�.

At higher values of the flow rate k0, the simple oscilla-
tions undergo a transition to mixed-mode or bursting oscil-
lations that occur past a sequence of period-doubling bifur-
cations �PD in Fig. 1�. This suggests that the MMO’s in the
hemin system cannot be attributed to phase-locked states on
a two-torus which is stable in a region close to the branch of

subcritical Hopf bifurcations SH1. In fact, the transition to
bursting oscillations involves an entire cascade of period-
doubling bifurcations which is accompanied by the forma-
tion of a chaotic attractor before the first mixed-mode state
is observed at k0=2.545 where 11 large amplitude oscilla-
tions alternate with 20 small amplitude oscillations �cf.
Figs. 4 and 5�.

Next, we described the periodic-chaotic progressions of
mixed-mode states that were observed along a one-parameter
path taken at k8=2.5 in Fig. 1. They are arranged in periodic
windows corresponding to a particular number L of large
amplitude oscillations. Within each periodic window, period-
adding sequences of LS states with a different number S of
small amplitude oscillations are encountered. Transitions be-
tween adjacent states LS and LS+1 occur via narrow chaotic
windows where periodic concatenated states of the form
LSLS+1 are embedded. Similar bifurcation sequences were
also observed by Hauser and Olsen �3� in the PO system and
Koper �19� in a three-variable model system.

The observation that mixed-mode states LS of a gradually
decreasing number L of large amplitude oscillations alternate
with narrow chaotic windows, together with the fact that a
chaotic attractor was formed prior to the observation of the
first mixed-mode state, suggests that the bursting oscillations
might actually be embedded in a chaotic attractor similar to a
scenario reported by Goryachev and colleagues �22�.

In that article it is argued that the mixed-mode states are
embedded in a horseshoe-type attractor. The bifurcations of
the MMO’s are described on the basis of a detailed investi-
gation of a suitable Poincaré map from which the transfor-
mation of the system’s slow manifold into a horseshoe-type
attractor was derived as parameters are varied. During the
transformation process, Poincaré maps are observed that are
very similar to the one we calculated in Fig. 4�c� subsequent
to the period-doubling bifurcation. In particular, Goryachev
et al. also observe a tent map with almost cuspoid tip �cf.
Fig. 5�e� in �22��. For the hemin system, however, it remains
an open task to find a Poincaré section that is well defined
for the whole parameter range of k0 values, where the burst-
ing oscillations are stable. Such a Poincaré section would
facilitate the establishment of a closer link of the bursting
dynamics in the hemin system to the mechanism proposed
in �22�.

In order to investigate the bursting behavior of the mixed-
mode oscillations, we exploited the slow-fast structure of the
ODE system �4� and used the slowly evolving variable p as a
�quasistatic� bifurcation parameter for the two-dimensional
fast subsystem �6�. By this analysis, the bursting behavior of
the three-dimensional system was classified according to the
bifurcations in the fast subsystem leading to the emergence
and disappearance of the small amplitude oscillations. Figure
7 shows that at k0=2.8 the system is a sub-Hopf/fold-cycle
burster according to the classification given by Izhikevich
�14�.

A subsequent two-parameter continuation of the fast sub-
system in the slow variable p and the flow rate k0 revealed a
transition in the bursting mechanism at k0
3.778 by which
the hemin system becomes a fold/sub-Hopf burster due to a
change in the nature of the homoclinic orbit in the fast sub-
system �cf. Figs. 10�a� and 10�c��. At k0=3.6 �Fig. 10�a��, the

FIG. 10. Transition in the bursting behavior from sub-Hopf/
fold-cycle at k0=3.6 �a�,�b� to fold/sub-Hopf type at k0=3.8 �c�,�d�.
�a�,�c� show codimension-1 bifurcation diagrams of the fast sub-
system together with trajectories calculated for k8=2.5 while �b�,�d�
depict the corresponding time series. As the flow rate k0 increases,
the invariant cylinderlike manifold �formed by stable limit cycles of
the fast subsystem� is destroyed as the location of the saddle-node
bifurcation SN1 approaches the unstable limit cycle that is created
in the subcritical Hopf bifurcation SH1 �a�. Henceforth, the fast
subsystem is bistable �c� and only relaxational oscillations are ob-
served �d�. Symbols denote SH1, subcritical Hopf bifurcation;
SNP1, saddle-node bifurcation of periodic orbit; SNi, saddle-node
bifurcation of fixed points; SHC, saddle homoclinic orbit; SNHC,
saddle-node homoclinic orbit. Solid and dashed bold lines denote
maxima and minima of a stable and an unstable limit cycle while
solid and dashed lines denote stable and unstable fixed points of the
fast subsystem.
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fast subsystem has an orbit that is homoclinic to the nonhy-
perbolic equilibrium at p
2.7 since the saddle-node bifur-
cation SN1 occurs on the large amplitude limit cycle. In con-
trast, at k0=3.8 �Fig. 10�c��, the saddle-node homoclinic orbit
SNHC has turned into the saddle homoclinic orbit SHC
which involves a hyperbolic equilibrium at p
2.2.

The slow-fast analysis also revealed an interesting expla-
nation concerning the origin of quasiperiodic behavior in the
hemin system. In Fig. 11 we show the same projections of
the phase flow on the torus as in Figs. 3�a� and 3�c�, but this
time superimposed with the bifurcation diagrams obtained
from the slow-fast analysis of the fast subsystem �6�. The
arrows indicate the direction of the flow on the torus. SNP
marks the location where a saddle-node bifurcation of peri-
odic orbits occurs. In addition, there is a subcritical Hopf
bifurcation at p
2.447 where an unstable �bold dashed
lines� limit cycle emerges. Thus, the bifurcation scenario in
the fast subsystem is similar to that shown in Fig. 7 where

we have analyzed the bursting oscillations at k0=2.8.
Notice how the flow always follows the invariant states of

the fast subsystem. For example, at k0=1.651 89, the trajec-
tory basically sweeps back and forth the saddle-node bifur-
cation point SNP while it performs large amplitude oscilla-
tions in the vicinity of the cylinderlike manifold �bold solid
line�, thereby creating also quasiperiodic behavior �Fig.
11�a��. As long as the amplitude of the oscillations along the
“inner part” of the cylinderlike manifold is sufficiently large,
the trajectory does not “feel” the attractive linelike quasista-
tionary manifold �thin solid line� and, therefore, remains in
the neighborhood of the cylinderlike manifold.

However, as the flow rate k0 is decreased, the phase flow
on the torus changes �Fig. 11�b��: As soon as the saddle-node
point SNP is passed to the left, the trajectory gets attracted
by the linelike quasistationary manifold. It is the saddle-node
point that causes the trajectory to change its direction. Then
the orbit returns to the saddle point S along its stable mani-
fold which, apparently, is confined to a neighborhood of the
linelike quasistationary manifold. Subsequently, the trajec-
tory moves along the two-dimensional unstable manifold of
the saddle point S to approach the cylinderlike manifold
where it performs large amplitude oscillations while slowly
moving to the left until the saddle-node point SNP is passed
again and the next cycle begins.

The results shown in Fig. 11 suggest that quasiperiodic
behavior in the hemin system is due to the coupling of an
oscillator in the fast x-y subsystem �which is represented by
the stable-limit-cycle solution� with the slow variable p, but
on a slow time scale. Indeed, a similar line of argument has
been used by Koper �19� to explain the origin of quasiperi-
odicity in a different system although a slow-fast analysis
was not performed to support this statement. However, since
tori with a phase flow similar to the one shown in Fig. 11
have been observed in several chemical systems �17–19�, it
is very likely that they share a common dynamical origin that
can be analyzed by a suitable slow-fast analysis.
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